498 research outputs found

    Non-linear optomechanical measurement of mechanical motion

    Get PDF
    Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of non-linear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic non-linearity of the radiation pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100~pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.Comment: 8 pages, 4 figures, extensive supplementary material available with published versio

    Strong thermomechanical squeezing via weak measurement

    Get PDF
    We experimentally surpass the 3 dB limit to steady-state parametric squeezing of a mechanical oscillator. The localization of an atomic force microscope cantilever, achieved by optimal estimation, is enhanced by up to 6.2 dB in one position quadrature when a detuned parametric drive is used. This squeezing is, in principle, limited only by the oscillator Q factor. Used on low temperature, high frequency oscillators, this technique provides a pathway to achieve robust quantum squeezing below the zero-point motion. Broadly, our results demonstrate that control systems engineering can overcome well established limits in applications of nonlinear processes. Conversely, by localizing the mechanical position to better than the measurement precision of our apparatus, they demonstrate the usefulness of mechanical nonlinearities in control applications

    Evanescent field optical readout of graphene mechanical motion at room temperature

    Get PDF
    Graphene mechanical resonators have recently attracted considerable attention for use in precision force and mass sensing applications. To date, readout of their oscillatory motion has typically required cryogenic conditions to achieve high sensitivity, restricting their range of applications. Here we report the first demonstration of evanescent optical readout of graphene motion, using a scheme which does not require cryogenic conditions and exhibits enhanced sensitivity and bandwidth at room temperature. We utilise a high QQ microsphere to enable evanescent readout of a 70 μ\mum diameter graphene drum resonator with a signal-to-noise ratio of greater than 25 dB, corresponding to a transduction sensitivity of SN1/2=S_{N}^{1/2} = 2.6 ×1013\times 10^{-13} m Hz1/2\mathrm{Hz}^{-1/2}. The sensitivity of force measurements using this resonator is limited by the thermal noise driving the resonator, corresponding to a force sensitivity of Fmin=1.5×1016F_{min} = 1.5 \times 10^{-16} N Hz1/2{\mathrm{Hz}}^{-1/2} with a bandwidth of 35 kHz at room temperature (T = 300 K). Measurements on a 30 μ\mum graphene drum had sufficient sensitivity to resolve the lowest three thermally driven mechanical resonances.Comment: Fixed formatting errors in bibliograph

    Cohesion, team mental models, and collective efficacy: Towards an integrated framework of team dynamics in sport

    Get PDF
    A nomological network on team dynamics in sports consisting of a multi-framework perspective is introduced and tested. The aim was to explore the interrelationship among cohesion, team mental models (TMM), collective-efficacy (CE), and perceived performance potential (PPP). Three hundred and forty college-aged soccer players representing 17 different teams (8 female and 9 male) participated in the study. They responded to surveys on team cohesion, TMM, CE and PPP. Results are congruent with the theoretical conceptualization of a parsimonious view of team dynamics in sports. Specifically, cohesion was found to be an exogenous variable predicting both TMM and CE beliefs. TMM and CE were correlated and predicted PPP, which in turn accounted for 59% of the variance of objective performance scores as measured by teams’ season record. From a theoretical standpoint, findings resulted in a parsimonious view of team dynamics, which may represent an initial step towards clarifying the epistemological roots and nomological network of various team-level properties. From an applied standpoint, results suggest that team expertise starts with the establishment of team cohesion. Following the establishment of cohesiveness, teammates are able to advance team-related schemas and a collective sense of confidence. Limitations and key directions for future research are outlined

    Efficacy of Online Training for Improving Camp Staff Competency

    Full text link
    Preparing competent staff is a critical issue within the camp community. This quasi-experimental study examined the effectiveness of an online course for improving staff competency in camp healthcare practices among college-aged camp staff and a comparison group (N = 55). We hypothesized that working in camp would increase competency test scores due to opportunities for staff to experientially apply knowledge learned online. Hierarchical linear modeling was used to analyse the cross-level effects of a between-individuals factor (assignment to experimental or comparison group) and within-individual effects of time (pre-test, post-test #1, and post-test #2) on online course test scores. At post-test #2, the difference in average test scores between groups was ~30 points, with the treatment group scoring lower on average than the comparison group. Factors that may have influenced these findings are explored, including fatigue and the limited durability of online learning. Recommendations for research and practice are discussed

    Algae as nutritional and functional food sources: revisiting our understanding.

    Get PDF
    Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.AGS & KEH thank the Biotechnology and Biological Sciences Research Council (BBSRC BB/1013164/1) of the UK for funding. The University of Dundee is a registered Scottish charity, No. SC015096. PP is supported by IDEALG in the frame of the stimuli program entitled “Investissements d’avenir, Biotechnologies-Bioressources” (ANR-10-BTBR-04-02). The open access fee was supported by NSF-OCE-1435021 (MLW), DIC project 1823-06 (MEC), Maine Sea Grant (NOAA) 5405971 (SHB), NSF #11A-1355457 to Maine EPSCoR at the University of Maine (SHB), and the listed funding to AGS and PP

    Colonialism, postcolonialism and the liberal welfare state

    Get PDF
    This article addresses the colonial and racial origins of the welfare state with a particular emphasis on the liberal welfare state of the USA and UK. Both are understood in terms of the centrality of the commodified status of labour power expressing a logic of market relations. In contrast, we argue that with a proper understanding of the relations of capitalism and colonialism, the sale of labour power as a commodity already represents a movement away from the commodified form of labour represented by enslavement. European colonialism is integral to the development of welfare states and their forms of inclusion and exclusion which remain racialised through into the twenty-first century

    Accumulation of copy number alterations and clinical progression across advanced prostate cancer.

    Get PDF
    BACKGROUND: Genomic copy number alterations commonly occur in prostate cancer and are one measure of genomic instability. The clinical implication of copy number change in advanced prostate cancer, which defines a wide spectrum of disease from high-risk localised to metastatic, is unknown. METHODS: We performed copy number profiling on 688 tumour regions from 300 patients, who presented with advanced prostate cancer prior to the start of long-term androgen deprivation therapy (ADT), in the control arm of the prospective randomised STAMPEDE trial. Patients were categorised into metastatic states as follows; high-risk non-metastatic with or without local lymph node involvement, or metastatic low/high volume. We followed up patients for a median of 7 years. Univariable and multivariable Cox survival models were fitted to estimate the association between the burden of copy number alteration as a continuous variable and the hazard of death or disease progression. RESULTS: The burden of copy number alterations positively associated with radiologically evident distant metastases at diagnosis (P=0.00006) and showed a non-linear relationship with clinical outcome on univariable and multivariable analysis, characterised by a sharp increase in the relative risk of progression (P=0.003) and death (P=0.045) for each unit increase, stabilising into more modest increases with higher copy number burdens. This association between copy number burden and outcome was similar in each metastatic state. Copy number loss occurred significantly more frequently than gain at the lowest copy number burden quartile (q=4.1 × 10-6). Loss of segments in chromosome 5q21-22 and gains at 8q21-24, respectively including CHD1 and cMYC occurred more frequently in cases with higher copy number alteration (for either region: Kolmogorov-Smirnov distance, 0.5; adjusted P<0.0001). Copy number alterations showed variability across tumour regions in the same prostate. This variance associated with increased risk of distant metastases (Kruskal-Wallis test P=0.037). CONCLUSIONS: Copy number alteration in advanced prostate cancer associates with increased risk of metastases at diagnosis. Accumulation of a limited number of copy number alterations associates with most of the increased risk of disease progression and death. The increased likelihood of involvement of specific segments in high copy number alteration burden cancers may suggest an order underlying the accumulation of copy number changes. TRIAL REGISTRATION: ClinicalTrials.gov NCT00268476 , registered on December 22, 2005. EudraCT  2004-000193-31 , registered on October 4, 2004
    corecore